organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,10-Phenanthrolin-1-ium 1-oxo-2,6,7trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylate 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylic acid monohydrate

Zhi Wang, Hong-Jun Zang* and Ming-Lin Guo

College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China Correspondence e-mail: chemhong@126.com

Received 29 May 2007; accepted 5 July 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.053; wR factor = 0.159; data-to-parameter ratio = 13.5.

The asymmetric unit of the title salt, $C_{12}H_9N_2^{+}C_5H_6O_6P^{-}$. $C_5H_7O_6P\cdot H_2O$, contains one 1,10-phenanthrolinium cation, one 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4carboxylate anion, one 1-oxo-2,6,7-trioxa-1-phospha-bicyclo-[2.2.2]octane-4-carboxylic acid neutral molecule and one water molecule. In the anion, the oxygen atoms of the carboxylate group are disordered over two positions, with site occupation factors *ca* 0.7:0.3. In the crystal structure, intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen-bonding interactions result in the formation of a three-dimensional network.

Related literature

For related literature, see: Guo (2005); Hensen et al. (1998, 2000).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_9N_2^+ \cdot C_5H_6O_6P^- \cdot C_5H_7O_6P.H_2O\\ M_r = 586.37\\ \text{Monoclinic, } P2_1/c\\ a = 9.2841 \ (18) \text{ Å}\\ b = 8.5863 \ (16) \text{ Å}\\ c = 31.124 \ (6) \text{ Å}\\ \beta = 99.917 \ (5)^\circ \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.948, T_{\rm max} = 0.972$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.159$ S = 1.035008 reflections 371 parameters 2956 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$

V = 2444.0 (8) Å³

Mo Ka radiation

 $0.20 \times 0.16 \times 0.12 \text{ mm}$

13684 measured reflections

5008 independent reflections

 $\mu = 0.25 \text{ mm}^{-1}$

T = 294 (2) K

Z = 4

38 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.35$ e Å⁻³ $\Delta \rho_{min} = -0.32$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O13-H13B\cdots O12^{i}$	0.84	2.47	2.893 (9)	112
$N1 - H1 \cdots O1^{n}$ $O6 - H6C \cdots O11^{i}$	0.90 0.85	1.91 1.61	2.765 (3)	159 173
		2		

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 2, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Tianjin Natural Science Foundation (07JCYBJC02200) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2150).

References

Bruker (1997). *SMART* (Version 5.051) and *SAINT* (Version 5.06a). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Guo, M.-L. (2005). Acta Cryst. E61, 0431-0433.

Hensen, K., Gebhardt, F. & Bolte, M. (1998). Acta Cryst. C54, 359-361.

Hensen, K., Spangenberg, B. & Bolte, M. (2000). Acta Cryst. C56, 208–210. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3418 [doi:10.1107/S1600536807032813]

1,10-Phenanthrolin-1-ium 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylate 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylic acid monohydrate

Z. Wang, H.-J. Zang and M.-L. Guo

Comment

Caged bicyclic phosphates are widely used as flame retardants in some polymers. As a low-toxicity and environmentally friendly flame retardant system, the phosphorus-nitrogen combination has been extensively studied. We report here the crystal structure of a new bicyclic phosphate cage compound.

The content of the asymmetric unit of the title salt is shown in Fig. 1. In the 1,10-phenanthrolinium cation, the C—N—C bond angle of $123.0(3)^\circ$ at the protonated N1 atom is significantly larger than that at the non-protonated N2 atom ($116.4(3)^\circ$). This widening is not unexpected, as analogous differences were already observed in previously reported monoprotonated phenanthrolines (Hensen *et al.*, 1998, 2000; Guo, 2005). In the anion, the oxygen atoms O11 and O12 of the carboxylate group are positionally disordered over two position, with site occupation factors of 0.701 (15) and 0.299 (15) for the major and minor components respectively. In the crystal structure, ions and neutral molecules are linked into an extended three-dimensional network by O—H…O and N—H…O hydrogen bonding interactions (Table 1, Fig. 2).

Experimental

The title salt was prepared by mixing ethanol solutions of 1-oxo-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-4-carboxylic acid (1.94 g in 10 ml) and 1,10-phenanthroline (1.8 g in 10 ml). The solution was stirred at room temperature for 10 min, after which the crystalline product was separated by filtration. The pure product (1.0 g) was heated and dissolved in water (25 ml). Single crystals suitable for X-ray analysis were obtained from this aqueous solution by slow evaporation of the solvent over a period of five days at room temperature.

Refinement

All H atoms were included in the refinement in the riding model approximation, with N–H = 0.90 Å, C–H = 0.93–0.97 Å, and $U_{iso}(H) = 1.2 U_{eq}(C, N)$.

Figures

Fig. 1. The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Only the major component of disorder is shown.

Fig. 2. Packing diagram of the title compound, showing hydrogen-bond interactions as dashed lines.

1,10-Phenanthrolin-1-ium 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylate 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxylic acid monohydrate

Crystal data

$C_{12}H_9N_2^+ \cdot C_5H_6O_6P^- \cdot C_5H_7O_6P \cdot H_2O$	$F_{000} = 1216$
$M_r = 586.37$	$D_{\rm x} = 1.594 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2791 reflections
a = 9.2841 (18) Å	$\theta = 2.5 - 26.3^{\circ}$
b = 8.5863 (16) Å	$\mu = 0.25 \text{ mm}^{-1}$
c = 31.124 (6) Å	T = 294 (2) K
$\beta = 99.917 (5)^{\circ}$	Prism, colorless
$V = 2444.0 (8) \text{ Å}^3$	$0.20\times0.16\times0.12~mm$
Z = 4	

Data collection

Bruker SMART CCD area detector diffractometer	5008 independent reflections
Radiation source: fine-focus sealed tube	2956 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 294(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 8$
$T_{\min} = 0.948, T_{\max} = 0.972$	$k = -10 \rightarrow 10$
13684 measured reflections	<i>l</i> = −38→36

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_0^2) + (0.0773P)^2 + 0.655P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
5008 reflections	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$

371 parameters

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

38 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
P1	1.15068 (9)	0.02050 (10)	0.95898 (3)	0.0336 (2)	
01	1.2593 (2)	0.0302 (3)	0.99848 (7)	0.0451 (6)	
O2	1.2147 (2)	0.0221 (3)	0.91570 (7)	0.0514 (7)	
O3	1.0366 (2)	0.1551 (3)	0.95336 (7)	0.0440 (6)	
O4	1.0576 (2)	-0.1324 (3)	0.95573 (7)	0.0460 (6)	
05	0.8678 (3)	-0.0305 (3)	0.81115 (7)	0.0533 (7)	
O6	0.7046 (2)	-0.0035 (3)	0.85531 (7)	0.0554 (7)	
H6C	0.6335	-0.0100	0.8339	0.066*	
C1	1.1025 (4)	0.0206 (5)	0.87599 (10)	0.0477 (9)	
H1A	1.1220	-0.0637	0.8571	0.057*	
H1B	1.1055	0.1178	0.8603	0.057*	
C2	0.9191 (3)	0.1378 (4)	0.91576 (10)	0.0387 (8)	
H2A	0.9109	0.2321	0.8983	0.046*	
H2B	0.8268	0.1210	0.9256	0.046*	
C3	0.9521 (4)	-0.1485 (4)	0.91557 (10)	0.0426 (8)	
H3A	0.8552	-0.1652	0.9224	0.051*	
H3B	0.9772	-0.2377	0.8992	0.051*	
C4	0.9527 (3)	-0.0008 (3)	0.88813 (9)	0.0308 (7)	
C5	0.8348 (4)	-0.0131 (4)	0.84658 (10)	0.0370 (8)	
P2	0.91080 (11)	0.49646 (13)	0.82372 (3)	0.0523 (3)	
07	1.0150 (3)	0.4764 (4)	0.86362 (9)	0.0841 (10)	
08	0.8420 (4)	0.3432 (3)	0.80474 (10)	0.0960 (11)	
09	0.7750 (3)	0.5977 (4)	0.82963 (7)	0.0649 (8)	
O10	0.9709 (3)	0.5822 (4)	0.78669 (8)	0.0795 (10)	
C6	0.7333 (5)	0.3608 (5)	0.76470 (14)	0.0862 (13)	
H6A	0.6396	0.3205	0.7694	0.103*	
H6B	0.7638	0.3021	0.7412	0.103*	
C7	0.6693 (4)	0.6187 (5)	0.78974 (10)	0.0575 (10)	
H7A	0.6594	0.7287	0.7828	0.069*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7B	0.5747	0.5798	0.7940	0.069*	
C8	0.8643 (4)	0.5989 (6)	0.74632 (11)	0.0712 (12)	
H8A	0.8993	0.5447	0.7228	0.085*	
H8B	0.8530	0.7081	0.7386	0.085*	
C9	0.7185 (4)	0.5323 (4)	0.75239 (10)	0.0440 (8)	
C10	0.6033 (4)	0.5554 (5)	0.71121 (11)	0.0549 (10)	
011	0.5054 (7)	0.4583 (8)	0.7037 (2)	0.0620 (19)	0.701 (15)
012	0.6099 (9)	0.6825 (11)	0.6909 (3)	0.123 (4)	0.701 (15)
O11'	0.4766 (12)	0.5159 (19)	0.7151 (4)	0.048 (3)	0.299 (15)
O12'	0.6430 (10)	0.553 (3)	0.6759 (3)	0.075 (7)	0.299 (15)
N1	0.5028 (3)	0.8006 (3)	0.96061 (8)	0.0342 (6)	
H1	0.5655	0.8589	0.9790	0.041*	
N2	0.5012 (3)	0.7655 (3)	1.04740 (8)	0.0381 (7)	
C11	0.5104 (4)	0.8262 (4)	0.91909 (10)	0.0386 (8)	
H11	0.5743	0.9009	0.9116	0.046*	
C12	0.4235 (4)	0.7417 (4)	0.88690 (10)	0.0422 (8)	
H12	0.4296	0.7583	0.8577	0.051*	
C13	0.3281 (4)	0.6333 (4)	0.89802 (10)	0.0399 (8)	
H13	0.2697	0.5762	0.8763	0.048*	
C14	0.3182 (3)	0.6079 (4)	0.94211 (9)	0.0339 (7)	
C15	0.2217 (4)	0.4975 (4)	0.95668 (11)	0.0402 (8)	
H15	0.1603	0.4379	0.9363	0.048*	
C16	0.2182 (4)	0.4786 (4)	0.99920 (11)	0.0405 (8)	
H16	0.1543	0.4060	1.0078	0.049*	
C17	0.3105 (3)	0.5678 (4)	1.03176 (10)	0.0345 (7)	
C18	0.3133 (4)	0.5502 (4)	1.07702 (11)	0.0410 (8)	
H18	0.2517	0.4791	1.0873	0.049*	
C19	0.4072 (4)	0.6385 (4)	1.10530 (10)	0.0450 (9)	
H19	0.4103	0.6283	1.1352	0.054*	
C20	0.4988 (4)	0.7445 (4)	1.08938 (10)	0.0437 (8)	
H20	0.5617	0.8039	1.1094	0.052*	
C21	0.4079 (3)	0.6769 (3)	1.01926 (9)	0.0316 (7)	
C22	0.4103 (3)	0.6958 (3)	0.97354 (9)	0.0307 (7)	
O13	0.3103 (4)	0.5046 (4)	0.79112 (13)	0.1197 (14)	
H13A	0.3580	0.5070	0.7702	0.144*	
H13B	0.2572	0.4255	0.7859	0.144*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0254 (4)	0.0425 (5)	0.0304 (4)	-0.0021 (4)	-0.0018 (3)	-0.0021 (4)
01	0.0347 (13)	0.0596 (15)	0.0368 (13)	-0.0045 (11)	-0.0062 (10)	-0.0028 (11)
O2	0.0258 (12)	0.0915 (19)	0.0353 (13)	-0.0075 (13)	0.0008 (10)	-0.0068 (12)
O3	0.0435 (13)	0.0436 (13)	0.0386 (13)	0.0066 (11)	-0.0103 (11)	-0.0131 (10)
O4	0.0449 (13)	0.0411 (13)	0.0435 (13)	-0.0065 (11)	-0.0160 (11)	0.0080 (10)
O5	0.0522 (16)	0.0778 (18)	0.0279 (13)	-0.0068 (14)	0.0014 (11)	-0.0081 (12)
O6	0.0284 (13)	0.096 (2)	0.0361 (13)	-0.0018 (13)	-0.0098 (10)	-0.0016 (12)
C1	0.0307 (18)	0.079 (3)	0.0318 (18)	-0.0028 (18)	0.0019 (14)	-0.0056 (17)

C2	0.0358 (18)	0.0419 (19)	0.0338 (17)	0.0050 (16)	-0.0065 (14)	0.0004 (14)
C3	0.0415 (19)	0.0357 (18)	0.0437 (19)	-0.0049 (16)	-0.0126 (16)	-0.0013 (15)
C4	0.0280 (16)	0.0373 (17)	0.0253 (14)	0.0001 (14)	-0.0009 (13)	-0.0020 (13)
C5	0.0346 (19)	0.0387 (19)	0.0347 (18)	-0.0041 (15)	-0.0020 (15)	0.0002 (14)
P2	0.0441 (6)	0.0700 (7)	0.0351 (5)	-0.0119 (5)	-0.0156 (4)	0.0103 (5)
07	0.0680 (19)	0.121 (3)	0.0496 (17)	-0.0271 (19)	-0.0275 (15)	0.0276 (16)
08	0.114 (2)	0.0543 (17)	0.091 (2)	0.0021 (17)	-0.0649 (19)	0.0064 (15)
09	0.0637 (18)	0.098 (2)	0.0291 (13)	-0.0002 (17)	-0.0041 (12)	-0.0061 (13)
O10	0.0362 (15)	0.152 (3)	0.0465 (15)	-0.0141 (18)	-0.0035 (12)	0.0238 (17)
C6	0.097 (3)	0.062 (2)	0.078 (2)	0.005 (2)	-0.049 (2)	-0.005 (2)
C7	0.049 (2)	0.080 (3)	0.0385 (19)	0.008 (2)	-0.0056 (17)	0.0008 (18)
C8	0.044 (2)	0.132 (3)	0.0354 (19)	0.002 (2)	-0.0004 (17)	0.020 (2)
C9	0.0395 (16)	0.0621 (18)	0.0262 (14)	0.0012 (15)	-0.0059 (13)	0.0023 (14)
C10	0.047 (2)	0.082 (3)	0.0306 (19)	0.003 (2)	-0.0077 (17)	0.0063 (19)
011	0.057 (3)	0.054 (3)	0.061 (4)	-0.004 (3)	-0.029 (3)	-0.002 (3)
012	0.142 (6)	0.109 (6)	0.086 (5)	-0.055 (5)	-0.069 (4)	0.050 (5)
011'	0.039 (5)	0.058 (6)	0.043 (5)	-0.005 (4)	-0.003 (3)	-0.008 (4)
O12'	0.034 (5)	0.167 (19)	0.023 (5)	-0.007 (7)	0.004 (4)	0.017 (6)
N1	0.0300 (14)	0.0383 (15)	0.0320 (14)	-0.0016 (12)	-0.0013 (11)	-0.0033 (12)
N2	0.0384 (16)	0.0431 (16)	0.0301 (14)	-0.0013 (13)	-0.0012 (12)	-0.0031 (12)
C11	0.0359 (18)	0.0440 (19)	0.0356 (18)	-0.0008 (16)	0.0054 (15)	0.0050 (15)
C12	0.041 (2)	0.054 (2)	0.0303 (17)	0.0072 (18)	0.0030 (15)	0.0022 (15)
C13	0.0374 (18)	0.046 (2)	0.0321 (17)	0.0033 (16)	-0.0059 (15)	-0.0053 (14)
C14	0.0286 (16)	0.0368 (18)	0.0338 (17)	0.0035 (15)	-0.0022 (14)	-0.0037 (14)
C15	0.0321 (18)	0.0385 (19)	0.0459 (19)	-0.0049 (15)	-0.0049 (15)	-0.0050 (15)
C16	0.0355 (19)	0.0371 (19)	0.048 (2)	-0.0038 (15)	0.0040 (16)	0.0040 (15)
C17	0.0321 (17)	0.0329 (17)	0.0376 (18)	0.0078 (14)	0.0038 (14)	0.0015 (14)
C18	0.044 (2)	0.0394 (19)	0.0413 (19)	0.0061 (16)	0.0128 (16)	0.0061 (15)
C19	0.050 (2)	0.054 (2)	0.0322 (18)	0.0080 (19)	0.0088 (16)	0.0034 (16)
C20	0.042 (2)	0.051 (2)	0.0351 (19)	0.0040 (17)	-0.0004 (16)	-0.0075 (16)
C21	0.0294 (16)	0.0341 (17)	0.0296 (16)	0.0061 (14)	0.0003 (13)	-0.0016 (13)
C22	0.0267 (15)	0.0322 (16)	0.0312 (16)	0.0027 (14)	-0.0011 (13)	0.0002 (13)
013	0.093 (3)	0.120 (3)	0.149 (4)	-0.018(2)	0.029 (3)	-0.022 (2)

Geometric parameters (Å, °)

P1—O1	1.452 (2)	C8—H8A	0.9700
P1—O3	1.557 (2)	C8—H8B	0.9700
P1—O2	1.563 (2)	C9—C10	1.535 (4)
P1—O4	1.565 (2)	C10—O12'	1.218 (8)
O2—C1	1.473 (4)	C10—O11	1.225 (6)
O3—C2	1.463 (3)	C10—O11'	1.250 (11)
O4—C3	1.455 (3)	C10—O12	1.268 (6)
O5—C5	1.204 (4)	N1—C11	1.325 (4)
O6—C5	1.286 (4)	N1—C22	1.352 (4)
O6—H6C	0.8548	N1—H1	0.8964
C1—C4	1.513 (4)	N2—C20	1.323 (4)
C1—H1A	0.9700	N2—C21	1.354 (4)
C1—H1B	0.9700	C11—C12	1.379 (4)

C2—C4	1.532 (4)	C11—H11	0.9300
C2—H2A	0.9700	C12—C13	1.369 (5)
C2—H2B	0.9700	C12—H12	0.9300
C3—C4	1.529 (4)	C13—C14	1.408 (4)
С3—НЗА	0.9700	C13—H13	0.9300
С3—Н3В	0.9700	C14—C22	1.404 (4)
C4—C5	1.547 (4)	C14—C15	1.430 (4)
P2—O7	1.447 (3)	C15—C16	1.339 (5)
P2—O8	1.536 (3)	C15—H15	0.9300
P2—O10	1.550 (3)	C16—C17	1.431 (4)
P2—O9	1.568 (3)	C16—H16	0.9300
O8—C6	1.470 (4)	C17—C21	1.403 (4)
O9—C7	1.455 (4)	C17—C18	1.413 (4)
O10—C8	1.467 (4)	C18—C19	1.359 (5)
С6—С9	1.522 (5)	C18—H18	0.9300
С6—Н6А	0.9700	C19—C20	1.393 (5)
С6—Н6В	0.9700	С19—Н19	0.9300
С7—С9	1.514 (5)	C20—H20	0.9300
C7—H7A	0.9700	C21—C22	1.436 (4)
С7—Н7В	0.9700	O13—H13A	0.8488
C8—C9	1.511 (5)	O13—H13B	0.8393
O1—P1—O3	114.37 (13)	С9—С8—Н8А	109.7
O1—P1—O2	114.69 (14)	O10-C8-H8B	109.7
O3—P1—O2	104.42 (13)	С9—С8—Н8В	109.7
O1—P1—O4	113.44 (13)	H8A—C8—H8B	108.2
O3—P1—O4	104.95 (13)	C8—C9—C7	107.8 (3)
O2—P1—O4	103.81 (13)	C8—C9—C6	110.7 (4)
C1—O2—P1	113.86 (19)	С7—С9—С6	107.9 (3)
C2—O3—P1	114.43 (18)	C8—C9—C10	110.9 (3)
C3—O4—P1	114.66 (18)	C7—C9—C10	108.6 (3)
С5—О6—Н6С	117.4	C6—C9—C10	110.8 (3)
O2—C1—C4	109.8 (2)	O12'—C10—O11	98.3 (8)
O2—C1—H1A	109.7	O12'—C10—O11'	121.3 (8)
C4—C1—H1A	109.7	O12'—C10—O12	61.1 (7)
O2—C1—H1B	109.7	O11—C10—O12	126.0 (4)
C4—C1—H1B	109.7	O11'—C10—O12	114.1 (7)
H1A—C1—H1B	108.2	O12'—C10—C9	118.4 (5)
O3—C2—C4	109.4 (2)	O11—C10—C9	117.4 (4)
O3—C2—H2A	109.8	O11'—C10—C9	114.6 (6)
C4—C2—H2A	109.8	O12—C10—C9	116.1 (4)
O3—C2—H2B	109.8	C11—N1—C22	123.0 (3)
C4—C2—H2B	109.8	C11—N1—H1	113.2
H2A—C2—H2B	108.2	C22—N1—H1	123.8
O4—C3—C4	109.5 (2)	C20—N2—C21	116.4 (3)
O4—C3—H3A	109.8	N1—C11—C12	119.9 (3)
С4—С3—НЗА	109.8	N1—C11—H11	120.0
O4—C3—H3B	109.8	C12—C11—H11	120.0
C4—C3—H3B	109.8	C13—C12—C11	119.8 (3)
НЗА—СЗ—НЗВ	108.2	C13—C12—H12	120.1

C1—C4—C3	109.4 (3)	C11—C12—H12	120.1
C1—C4—C2	109.3 (3)	C12-C13-C14	120.4 (3)
C3—C4—C2	108.1 (3)	С12—С13—Н13	119.8
C1—C4—C5	110.4 (2)	C14—C13—H13	119.8
C3—C4—C5	109.9 (2)	C22—C14—C13	117.5 (3)
C2—C4—C5	109.8 (2)	C22-C14-C15	118.4 (3)
O5—C5—O6	126.8 (3)	C13—C14—C15	124.2 (3)
O5—C5—C4	121.3 (3)	C16—C15—C14	121.1 (3)
O6—C5—C4	112.0 (3)	С16—С15—Н15	119.4
O7—P2—O8	113.61 (17)	C14—C15—H15	119.4
O7—P2—O10	114.93 (16)	C15—C16—C17	121.4 (3)
O8—P2—O10	107.47 (19)	C15-C16-H16	119.3
O7—P2—O9	113.40 (18)	С17—С16—Н16	119.3
O8—P2—O9	103.32 (18)	C21—C17—C18	116.5 (3)
O10—P2—O9	102.94 (17)	C21—C17—C16	119.8 (3)
C6—O8—P2	114.7 (2)	C18—C17—C16	123.7 (3)
C7—O9—P2	114.0 (2)	C19—C18—C17	119.1 (3)
C8—O10—P2	114.0 (2)	C19—C18—H18	120.5
O8—C6—C9	109.4 (3)	C17—C18—H18	120.5
O8—C6—H6A	109.8	C18—C19—C20	119.8 (3)
С9—С6—Н6А	109.8	С18—С19—Н19	120.1
O8—C6—H6B	109.8	С20—С19—Н19	120.1
С9—С6—Н6В	109.8	N2—C20—C19	123.7 (3)
H6A—C6—H6B	108.2	N2—C20—H20	118.1
09—C7—C9	110.2 (3)	С19—С20—Н20	118.1
O9—C7—H7A	109.6	N2—C21—C17	124.5 (3)
С9—С7—Н7А	109.6	N2—C21—C22	117.4 (3)
O9—C7—H7B	109.6	C17—C21—C22	118.1 (3)
С9—С7—Н7В	109.6	N1—C22—C14	119.5 (3)
H7A—C7—H7B	108.1	N1—C22—C21	119.3 (3)
O10—C8—C9	110.0 (3)	C14—C22—C21	121.2 (3)
O10—C8—H8A	109.7	H13A—O13—H13B	103.8
O1—P1—O2—C1	-176.9 (2)	O8—C6—C9—C7	-60.0 (5)
O3—P1—O2—C1	-51.0 (3)	O8—C6—C9—C10	-178.8 (4)
O4—P1—O2—C1	58.7 (3)	C8—C9—C10—O12'	32.4 (13)
O1—P1—O3—C2	-174.5 (2)	C7—C9—C10—O12'	150.7 (13)
O2—P1—O3—C2	59.3 (2)	C6—C9—C10—O12'	-91.0 (13)
O4—P1—O3—C2	-49.6 (2)	C8—C9—C10—O11	150.2 (7)
O1—P1—O4—C3	-177.4 (2)	C7—C9—C10—O11	-91.5 (7)
O3—P1—O4—C3	57.0 (2)	C6—C9—C10—O11	26.8 (7)
O2—P1—O4—C3	-52.3 (2)	C8—C9—C10—O11'	-173.8 (10)
P1	-6.5 (4)	C7—C9—C10—O11'	-55.5 (10)
P1O3C2C4	-7.5 (3)	C6—C9—C10—O11'	62.8 (10)
P1—O4—C3—C4	-4.5 (3)	C8—C9—C10—O12	-37.3 (8)
O2—C1—C4—C3	-55.4 (3)	C7—C9—C10—O12	81.0 (8)
O2—C1—C4—C2	62.7 (3)	C6—C9—C10—O12	-160.7 (8)
O2—C1—C4—C5	-176.4 (3)	C22—N1—C11—C12	-1.3 (5)
O4—C3—C4—C1	61.9 (3)	N1—C11—C12—C13	0.9 (5)
O4—C3—C4—C2	-57.0 (3)	C11—C12—C13—C14	0.2 (5)

O4—C3—C4—C5	-176.9 (3)	C12—C13—C14—C22	-0.8 (5)
O3—C2—C4—C1	-54.9 (3)	C12—C13—C14—C15	179.9 (3)
O3—C2—C4—C3	64.1 (3)	C22-C14-C15-C16	0.4 (5)
O3—C2—C4—C5	-176.1 (2)	C13-C14-C15-C16	179.7 (3)
C1—C4—C5—O5	12.0 (4)	C14—C15—C16—C17	0.0 (5)
C3—C4—C5—O5	-108.7 (3)	C15—C16—C17—C21	-0.4 (5)
C2—C4—C5—O5	132.6 (3)	C15—C16—C17—C18	-178.7 (3)
C1—C4—C5—O6	-168.5 (3)	C21—C17—C18—C19	0.4 (4)
C3—C4—C5—O6	70.9 (3)	C16—C17—C18—C19	178.7 (3)
C2—C4—C5—O6	-47.9 (4)	C17—C18—C19—C20	0.0 (5)
O7—P2—O8—C6	178.7 (3)	C21—N2—C20—C19	0.0 (5)
O10—P2—O8—C6	-53.0 (4)	C18—C19—C20—N2	-0.3 (5)
O9—P2—O8—C6	55.4 (4)	C20-N2-C21-C17	0.5 (4)
O7—P2—O9—C7	-180.0 (3)	C20-N2-C21-C22	-179.0 (3)
O8—P2—O9—C7	-56.5 (3)	C18—C17—C21—N2	-0.7 (4)
O10—P2—O9—C7	55.2 (3)	C16—C17—C21—N2	-179.1 (3)
O7—P2—O10—C8	179.0 (3)	C18—C17—C21—C22	178.8 (3)
O8—P2—O10—C8	51.5 (3)	C16—C17—C21—C22	0.4 (4)
O9—P2—O10—C8	-57.2 (3)	C11—N1—C22—C14	0.6 (4)
P2	0.3 (5)	C11—N1—C22—C21	-179.2 (3)
P2—O9—C7—C9	1.1 (4)	C13—C14—C22—N1	0.5 (4)
P2	2.4 (5)	C15-C14-C22-N1	179.8 (3)
O10-C8-C9-C7	58.6 (4)	C13—C14—C22—C21	-179.7 (3)
O10-C8-C9-C6	-59.2 (5)	C15-C14-C22-C21	-0.4 (4)
O10-C8-C9-C10	177.4 (3)	N2-C21-C22-N1	-0.7 (4)
09—C7—C9—C8	-60.6 (4)	C17—C21—C22—N1	179.8 (3)
09—C7—C9—C6	59.0 (4)	N2-C21-C22-C14	179.5 (3)
O9—C7—C9—C10	179.2 (3)	C17—C21—C22—C14	0.0 (4)
O8—C6—C9—C8	57.7 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O13—H13B…O12 ⁱ	0.84	2.47	2.893 (9)	112
N1—H1···O1 ⁱⁱ	0.90	1.91	2.765 (3)	159
O6—H6C···O11 ⁱ	0.85	1.61	2.459 (5)	173
	. 1			

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) -*x*+2, -*y*+1, -*z*+2.

